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ABSTRACT 

Recent redshift surveys suggest that most galaxies are distributed on the surfaces of bubbles 
surrounding large voids. To investigate the quantitative consistency of this qualitative picture 
of large-scale structure, we study analytically the clustering properties of galaxies in a universe 
filled with spherical shells. This phenomenological model comprises three galactic populations: 
shell galaxies, placed at random on spherical shells distributed randomly in space; cluster galax- 
ies, located at the points where three shells intersect; and a random, unclustered component of 
background galaxies. We calculate the two-point galaxy correlation function, the galaxy-cluster 
cross-correlation function, and the void probability function for models with an arbitrary dis- 
tribution of shell sizes. We also calculate the three-point correlation function and the peculiar 
velocity correlation tensor for shell galaxies. With - 20% of galaxies in clusters and a power 
law distribution of shell sizes, n,h(R) - R-O, 01 N 4, the observed slope and amplitude of the 
galaxy two-point correlation function tgg( T can be reproduced. (It has recently been shown ) 
that the same model parameters reproduce the enhanced cluster two-point correlation function, 
&Jr).) For a Poisson distribution of shells, the galaxy and cluster correlation functions are 
both positive out to twice the maximum shell radius, and tss does not show a strong break at 

r- lOh-1 Mpc. In this model, elliptical galaxies, with a higher percentage of cluster mem- 
bership, are more strongly correlated than spirals, tee > &, in qualitative agreement with the 
observed morphological trend; however, the slope of the correlation function for ellipticals is not 
as steep as the observed value. The scaled three-point correlation function, Q, is moderately fla,t 

on scales &lOh-’ Mpc with amplitude 0.4SQS0.8, in satisfactory agreement with the observed 
value, Qd3 = 1.0 f 0.4. When measured over larger scales, Q should be found to increase with 
separation. The model also yields reasonable agreement with the observed slope of the galaxy- 
cluster cross correlation function, &,, but its correlation length, rzg N 6h-’ Mpc, is roughly 30% 
lower than the observed value, rzg - - 8.8h-’ Mpc. Given the uncertainties in the observational 
determination of rzg, this discrepancy is only marginal (about comparable to that between t,he 
data and the cold-dark-matter model). Assuming peculiar velocities arise from shell expansion, 
as expected in some explosion models, the parallel component of the shell galaxy velocity corre- 
lation tensor, II(r), is consistent with the observed spiral galaxy velocities on large scales (after 
subtracting out the bulk motion due to the Great Attractor and Virgo infall). However, the per- 
pendicular velocity component C(r) is in conflict with the data unless the shell expansion velocity 
is substantially smaller than the Hubble speed. The void probability function of the model is in 
reasonable agreement with observations if - 20% of the galaxies are in the unclustered (or weakly 
clustered) background. We also consider a refined model with ‘self-avoiding’ shells, in which shell 
interactions are presumed to prevent the centers of shells from lying inside other bubbles, i.e., 
the bubbles are anticorrelated on small scales. In this case, the two-point correlation function of 
shell galaxies is steepened, but the amplitude is reduced. When cluster galaxies are included, we 
expect this model will also provide a good fit to the galaxy two-point function. 

Subject headings: cosmology - galaxies: clustering 
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I. INTRODUCTION 

How are galaxies distributed in space on large scales? Although the observational data base in 
cosmology has improved dramatically in recent years, me still have only a partial understanding 
of this issue. Beginning in the late seventies (Tifft and Gregory 1976; Joeveer and Einasto 
1978; Gregory and Thompson 1979; Tarenghi, et al. 1980; Gregory, Thompson, and Tifft 1981; 
Kirshner, et al. 1981) and especially with the first results of the CfA2 redshift survey extension (de 
Lapparent, Geller, and Huchra 1986), a picture has emerged in which a large fraction of gala,xies 
appear to be distributed on the surfaces of quasi-spherical shells surrounding large voids, with 
rich clusters occupying the interstitial regions between shells. The CfA and other recent redshift 
surveys (Haynes and Giovanelli 1986; Da Costa, et al. 1988; Da Costa, et al. 1989) suggest tha,t 
shells with radii up to 30 h-1 Mpc (h E H,/lOOkm s-‘Mpc-‘) and with a volume filling factor 
of order unity may be the dominant structures in the Universe. 

Such bubbly structure may arise naturally in explosive models of galaxy formation (Ostriker 
and Cowie 1981; Ikeuchi 1981; Ostriker, Thompson, and Witten 1986; Yoshioka and Ikeuchi 
1990), in which positive energy seeds generate shock waves, sweeping the ambient medium onto 
expanding shells. The shells later cool and, presumably, fragment into galaxies, although this 
process is not yet well understood (White and Ostriker 1990; Hwang, Vishniac, and Shapiro 1990). 
In addition, models in which large-scale structure forms via gravitational instability appear to 
generate voids from negative density perturbations (Fillmore and Goldreich 1984; Bertschinger 
1985), as well as large two-dimensional sheets and shells (White, et al. 1987; Melott and Shandarin 
1990; Park 1990) having the same qualitative appearance as the CfA slices. 

Although the evidence for the existence of bubbly structure in the redshift surveys is visually 
compelling, it remains largely qualitative and anecdotal. The interpretation of the data has 
therefore been a matter of debate. For example, the structures are seen in redshift space rather 
than physical space, so they are polluted by peculiar velocities (Kaiser 1987; McGill 1990): how 
coherent does the shell structure remain when such effects are removed? In addition, although at 
least some of the shells appear to form closed surfaces, it has been suggested that the large-scale 
topology is sponge-like, with both under- and over-dense regions forming connected, percolating 
networks (Gott, Melott, and Dickinson 1986). The interpretational problems are compounded by 
the fact that the largest structures found are comparable to the size of the surveys, so we are 
not yet dealing with a fair sample to which one can address quantitative, statistical questions (de 
Lapparent, Geller, and Huchra 1988). 

Nevertheless, we would like to know whether the bubble paradigm of large-scale structure is 
an accurate representation of the galaxy distribution, quantitatively consistent with the observed 
clustering properties of galaxies. In particular, can a structure dominated by bubbles reproduce 
the galaxy correlation functions. 7 If so, what does this entail about the properties of the bubble 
distribution? In this paper, we address these questions by studying galaxy statistics in a class of 
simple phenomenological models: most galaxies (shell galaxies) are distributed randomly on thin 
spherical shells surrounding voids; in addition, some galaxies are placed in clusters located at the 
intersections of three shells (chter galaxies), and others are distributed in a random, uniform 
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background (background galaxies). For most of the paper, we assume the shells themselves arc 
distributed in a random Poisson process, i.e., they are uncorrelated. We present results for 
an arbitrary distribution of shell sizes and apply them specifically to the case of a power law 
distribut,ion of shell radii, n,h(R) o[ Rea, truncated at small (Rmi,) and large (RmZ) radii. 
These model parameters are not well constrained by observations: in present redshift surveys, 
the distribution of void sizes is poorly determined, because the total number of voids is small 
(de Lapparent, Geller, and Huchra 1988). Determination of the void size dist,ribution will require 
much larger samples than those currently available (Geller and Huchra 1985). 

Previous work on the shell model includes numerical (Weinberg, Ostriker, and Dekel 1989, 
hereafter WOD; Bahcall, Henriksen, and Smith 1989, hereafter BHS) and analytic (Kulsrud and 
Cowley 1989) studies of the distribution of galaxy clusters, and some numerical work on the galaxy 
distribution (Saarinen, Dekel, and Carr 1987; Ostriker and Strassler 1989; BHS). In particula,r, 
WOD derived the cluster mass function and two-point correlation function for models with equal 
size shells and a power law distribution of shell radii. In the case of equal size shells, the slope 
of the cluster two-point correlation function is too flat, and the correlation length is too large 
compared to the mean separation of clusters. Models with a power law distribution of shell sizes 
match with cluster observations reasonably well if 01 N 3.5 - 4.5 and the volume filling factor of 
the shells f N 0.8- 1.2. WOD set R,, = 30h-’ Mpc, comparable to the largest voids seen in the 
redshift surveys, and assumed R,,,i,/R maz = l/8. In their best fit models, the cluster correlation 
length is still somewhat too large, unless shell merging or an unclustered cluster population is 
taken into account. 

We find that the galazy two-point function is a sensitive function of the shell size distribution, 
and the observed two-point correlation function is reproduced best with shell size index 01 N 4 and 
with - 20% of galaxies in clusters. It is noteworthy that this choice of shell size index a gives good 
fits to both the galaxy and cluster correlation functions, since they arise from different geometrical 
features of the model. Thus, agreement with the galaxy and cluster correlation functions fixes the 
distribution of shell sizes, a prediction which can be tested when deeper surveys have sufficient 
data to quantitatively characterize the bubble size distribution. In this sense, we disagree partially 
with the analysis of BHS, who also included shell galaxies in their numerical simulations. Although 
their results show large numerical scatter, they find the galaxy two-point function fits well with 
observations, except that it has a positive tail at large separation, not seen in the data. Moreover, 
they claim the agreement is insensitive to the model parameters. We show how these statistical 
features can be derived analytically and that long wavelength tails are artifacts of numerical 
simulations, and demonstrate the dependence of the results on the parameters of the model. For 
the above choice of o, we also find that the scaled three-point function, Q, is quite flat over scales 
&,I0 h-’ Mpc, with an amplitude (for shell galaxies) in reasonable agreement with the observed 
value. 

Although the two- and three-point functions may be reasonably counted as successes of the 
bubble model, it is well known that a variety of geometrical prescriptions for galaxy clustering 
can yield satisfactory galaxy two- and three-point functions (Soneira and Peebles 1978). We 
therefore consider additional statistical tests of the model, in particular, the cluster-galaxy cross- 

correlation function, the peculiar velocity correlation tensor, and the void probability function. 
The slope of the cross-correlation function is in good agreement with the observations, based on 
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the recent reanalysis of the data by Lilje and Efstathiou (1988a,b). The amplitude oft& is lower 
than the observed value, but is roughly within the observational error bars if uncertainties in the 
selection function and cosmological correct,ion are taken into account. If we assume t,hat~ galaxy 
peculiar velocities arise in part from the expansion velocity of the shells, as would be the case in 
some versions of the explosion model, we can estimate the peculiar velocity correlation function. 
We then compare the model with the velocity correlation t.ensor for a sample of spiral galaxies 
on scales 1000-3000 km/set (G&ski, et al. 1989, hereafter GDSWY; Groth, Juszkiewicz, and 
Ostriker 1989, hereafter GJO), after the bulk motion due to the Great Attractor and Virgo infall 
have been subtracted from the data (GJO). Taking the shell expansion velocity expected from 
explosion models, the parallel component of the velocity correlation is in reasonable agreement 
with the observations, but the perpendicular component of the model has the wrong sign and 
too large an amplitude. For consistency, then, we must assume that shell velocities have deca,yed 
to small values (e.g., due to shell collisions, or if R < l), and that the residual velocities of 
the spiral sample arise instead from, e.g., infall into clusters (GJO). Since the shell model is 
motivated by the observations of large-scale voids, it should be able to reproduce the observed 
void probability function (VPF). If we include only shell and cluster galaxies, however, the model 
predicts an excess of voids of radius r N 3-9h-1 Mpc when compared to the earlier CfAl redshift 
data (Maurogordato and Lachieze-Rey 1987). On the other hand, if N 20% of the galaxies are 
unclustered (or very weakly clustered), they populate a substantial fraction of the voids, and the 
observed VPF can be reproduced over this range, within the observational uncertainties. Although 
searches for such unclustered field galaxies suggest that they make up no more than 10% of the 
galaxy population, the background galaxies in the shell model could be weakly clustered without 
seriously affecting the VPF. On the other hand, the VPF analysis is based on the relatively 
shallow CfAl survey, which was not sensitive to the large r N 10 - 30h-’ Mpc voids seen in t~he 
CfA2 slices. To accurately constrain the models, we must await statistical analysis of the VPF 
for the complete CfA2 data, or possibly even larger surveys. (Recently, Ostriker and Strassler 
(1989) have analyzed the projected two-dimensional void probability for the first CfA2 slice, and 
find it can be reproduced by a shell distribution.) Furthermore, the void probability for the shell 
model is sensitive to the spatial distribution of bubbles; if bubble centers are anti-correla,ted on 
small scales, e.g., due to shell interactions, the VPF is presumably enhanced. 

We note that the bubble model considered here is not in conflict with the possibility that the 
topology of the large-scale galaxy field is sponge-like (Gott, Melott, and Dickinson 1986) rather 
than ‘bubbly’: if we allowed for clustering within the shells, the bubble surfaces would be patchy, 
so that both under- and over-dense regions could form connected networks. Here, we are more 
interested in the geometrical aspects of the shell model, which may provide a plausible picture (if 
not caricature) of the redshift survey data. 

In the following sections, we study the galaxy distribution in the shell model by calculating 
analytically the two- and three-point correlation functions of galaxies, the peculiar velocity 
correlation function, and the void probability function. In particular, we test whether the values 
of parameters (o 2~ 4 and f N 1) used to reproduce the observed distribution of clusters by WOD 
can also reproduce the observed distribution of galaxies. In 511, we briefly review observations 
concerning the distribution of galaxies. In 5111, a simple version of the bubble model with equal 
size shells is considered. In $IV, we extend the analysis to an arbitrary distribution of shell sizes, 
focusing on a model with a power law distribution. In §V, we include the contribution from 
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cluster galaxies at shell intersections as well as a possible unclustered (randomly distributed) 
population of background galaxies, focusing on the galaxy two-point correlation function and its 
morphological dependence, the cluster-galaxy cross correlation function, and the void distribution. 
In $VI, we take into account the interaction between shells, modifying the bubble distribution 
so that the centers of shells do not lie inside other bubbles; we show how this anti-correlation of 
shells on small scales affects the galaxy two-point correlation function. Finally, the results arc 
discussed and avenues for further research are outlined in §VII. In the Appendices, we discuss 
several mathematical details. 

II. OBSERVATIONS 

Observationally, the galaxy two-point correlation function tg9( ) r is well established and fitted 
by the power law 

egg(T) = (r/r,)-%. (2.1) 

From angular correlation studies of the Lick catalog and other samples (Groth and Peebles 1977), 
the slope was found to be ^10 = 1.77 f 0.04 and the correlation length r0 N 4.7h-1 Mpc, in the 
range 0.05 h-’ Mpcsrs9 h-’ Mpc. These values are consistent with those obtained from the 
early CfAl redshift survey data (Davis and Peebles 1983) and from the Southern Sky and IRAS 
catalogs (Davis, et al. 1988). On the other hand, from the first two slices of the CfA redshift survey 
extension, de Lapparent, Geller, and Huchra (1988) f ound ye = 1.6f0.3 and r0 = 7.52;:: h-l Mpc 

in the range of separation - 3 - 14 h-l Mpc, and noted the large uncertainties. At separations 
larger than about 10 h-’ Mpc, &(r) app ears to steepen and generally becomes lost in the noise 
at r - 20 h-’ Mpc. Recent angular correlation studies with larger samples (Collins, Heydon- 
Dumbleton, and MacGillivray 1989; Maddox et al. 1990) confirm the power law behavior of 
&(r). In particular, from the APM survey, Maddox et al. (1990) find a best-fit slope parameter 
-n, = 1.668 on scales r,$lO h-’ Mpc; however, on larger scales they find substantially more power 
than the Lick catalog (the break at r N 10 h-’ Mpc is more gentle). In comparing models to the 
data, we will focus on the range where i& is well approximated by a power law, and will take 

r. = 5 f lh-‘Mpc ; ^lo = 1.8 f 0.2 (2.2) 

as canonical values. We note that clustering due to gravity within shells, not included in the 
model, will presumably enhance the two-point function on small scales; strictly speaking, then, 
we should only use the observed correlation function as an upper bound on the shell model value. 
To compare the model correlation function with the data on larger scales, rX14h-’ Mpc, we are 
currently investigating the angular two-point function ~(0) in the shell model. (At present, only 
the angular surveys yield statistically significant correlations on large scales.) 

An important feature of galaxy clustering is the observed morphological segregation of the 
galaxy population in different environments (see, e.g., Dressier 1980). While some 80% of field 
galaxies are spirals, as few as 15% of galaxies in compact clusters like Coma display spiral 
structure. This segregation is reflected in the dependence of the galaxy correlation function 
on morphological type, first studied by Davis and Geller (1976). (See also Sharp, Jones, and 
Jones 1978; Sadler and Sharp 1984.) From an angular correlation analysis of the Uppsala catalog, 
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they found significant variations in the slope and amplitude of the correlation function between 
different morphological types. For ellipticals, they found ye N 2.10 and r0 N 6.6 h-’ Mpc, 
while ye N 1.69 and r0 N 4.4 h-l Mpc for spiral galaxies. In a recent survey of the Pisces- 
Perseus supercluster (Giovanelli, Haynes, and Chincarini 1986; Giovanelli et al. 1986; Haynes and 
Giovanelli 1986, 1988), the above trend was confirmed: for ellipticals in Pisces-Perseus -ye = 2.06, 
for Sa and Sab ^10 = 1.81, for Sb and Sbc ye = 1.63, and for SC galaxies +yO = 1.47. Despite these 
morphological differences in clustering, it appears that both early- and late-type galaxies trace 
out, the shell structure seen in the first CfA2 slice (Huchra et al. 1990). 

The three-point galaxy correlation function can be written as a sum of two-point functions 
plus the reduced three-point function C (Peebles 1980). It is conventional to consider the scaled 
three-point correlation function, defined by 

<(Ta, rb,‘c) 

Q(ra’Tb’Tc) E tgg(‘a)tgg(%) + &?g(dtgg(Tc) + &7dTC)&dT~)~ 
(2.3) 

The galaxy three-point function has not been as well determined as the two-point correlation 
function. From the Lick catalog, Groth and Peebles (1977) f ound that Q is fairly constant on 
scales rs.10 h-’ Mpc, with an average value Q = 1.29 f 0.21. Since then, estimates of Q from 
other surveys have varied: Q = 0.8 f 0.1 from a subsample of the CfAl survey (Efstathiou and 
Jedredjewski 1984); Q = 0.60 f 0.06 from the Durham-AAT survey and Q = 1.3 f 0.3 from the 
Kirshner, Oemler, Schecter (1978) survey (Bean, et al. 1983); and Q N 1 from the projected 
bispectrum of the Shane-Wirtanen counts (Fry and Seldner 1982). Recent estimates of Q have 
been toward the lower end of the spectrum; e.g., Peebles (1988a) quotes Q - 0.7, while Fry (1990) 
reports Q N 0.6. For comparison with models, we will assume Q is in the range 

Q = 1.0 f 0.4 . (2.4) 

The two-point correlation function of rich clusters has been a subject of intensive study and 
debate in recent years. The cluster correlation function is apparently consistent with a power 
law, 

&c(T) z (r/rco)--~~~ I 

but both the slope and amplitude, in addition to the range over which this form holds, are 
uncertain. A variety of studies based on the Abell, Zwicky, and Lick catalogs find values in the 
range 

14h-‘Mpc < rcO < 30h-‘Mpc , “ice = 1.6 rb 0.3 (2.6) 

(Bahcall and Soneira 1983; Shectman 1985; Postman, Geller, Huchra 1986; for a recent review 
with more complete references, see Bahcall 1988; see also Geller and Huchra 1988). There is also 

some question about the largest scale on which &c has been reliably determined to be positive, 
with estimates ranging from about 40 to over 100 h-l Mpc. These uncertainties are compounded 
by the issue of projection contamination of cluster catalogs (Sutherland 1988; Dekel, et al. 1989; 
Olivier, et al. 1990), which appears to generate spurious clustering on small scales. 
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In addition to tss(r) and &c(r), the cluster-galaxy cross correlation function &s(r) can be 
used to test models of the galaxy distribution. From a study of rich Abel1 clusters and galaxies 
in the Lick catalog, Seldner and Peebles (1977a,b) found that tcg(r) is well described by 

&dT) = ( ,,;Mpc)-‘” + ( 12h-:Mpc)-1’7 (2.7) 

for 0.5h-‘MpcsrS40h-‘Mpc. In a recent reanalysis using redshifts for 204 Abel1 clusters and 
modem estimates of the galaxy luminosity function, Lilje and Efstathiou (1988a,b) find that 
E&r) is reliably determined only on scales r&20h-lMpc and is well fitted to a power law, 

5cd~) = ( 8.,h:~Mpc) -22. (2.8) 

The cluster-galaxy cross correlation function is an especially useful probe on these intermediate 
scales, lOh-lMpc ~r~20h-1Mpc. Although the effects of projection contamination on &s(r) 
have not yet been studied, it should be more accurately determined than the cluster-cluster two- 
point function because of the large number of galaxies in the Lick catalog (Lilje and Efstathiou 
1988b). Although the quoted statistical errors in the slope and correlation length of scs are small, 
Lilje and Efstathiou (198813) note that roughly 25 - 30% errors in the correlation length arise 
from uncertainties in the observer selection function and the K-correction. 

Recently, several groups have analyzed the galaxy peculiar velocity correlation tensor on large 
scales (GDSWY; GJO; Szalay 1988; Kaiser 1989). The large-scale flows are well modeled by the 
Great Attractor model, supplemented with Virgo infall; that is, the large-scale velocity field 
is dominated by gravitational effects. However, when the gravitationally induced bulk flow is 
subtracted from the data, a statistically significant residual velocity field remains (GJO, Figs. 
6 and 7). Splitting the velocity correlation function into parallel (II) and perpendicular (C) 
components, < c(p) v’(?’ + 7) >g= II(r) + 2X(r), GJO find that the means of the residual 
components for the spiral galaxy sample are 

II = (-0.79 f 0.16)( lOOkm/sec)’ 

C = (-0.34 f 0.27)(100km/sec)2 (2.9) 

over the range r = 10 - 3Oh-1 Mpc. The parallel component is statistically significant, but the 
perpendicular component is not. In principle, the residual field could arise from void expansion, in 
addition to other effects such as infall onto forming clusters (GJO). B arring unlikely cancellations 
between the different possible sources of the residual field, we can use the values of II and C above 
as upper bounds on the magnitude of the velocity field generated by shell expansion. (Since a 
large fraction of spirals lie on the surfaces of shells, it is natural to use the spirals as indicators 
of shell motion.) Given the observational difficulties, the velocity data should be interpreted 
with caution: the galaxies are not uniformly sampled, and the presence of bulk flows on scales 
comparable to the sample size indicates the data do not constitute a fair sample (GJO). 

The void probability function (VPF), I&(T), is the probability that a randomly placed sphere 
of radius r contains no galaxies. The VPF has been analyzed for sub-samples of the CfAl 
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survey (Hamilton 1985; Panek 1985; Maurogordato and Lachieze-Rey 1987, hereafter ML) and 
for the Perseus-Pisces survey (Fry, etal. 1989), for void radii up to r - lOh-’ Mpc. We discuss 
the observations in subsequent sections. Here, we merely note that the ‘raw’ VPF is strongly 
sensitive to fluctuations in the number density of galaxies in a sample, which are known to be 
large in present redshift surveys. For example, de Lapparent, Geller, and Huchra (1988) est,imat,e 
that the uncertainty in the mean density of the CfAl (14.5) sample is 6ng/ng N 1. If galaxies were 

distributed in a random Poisson process with mea,n density ns, the VPF would be I&(V) = epngV, 
so that order unity fluctuations in density propagat,e into large fluctuat,ions in the void probability. 
This is displayed dramatically in the randomly diluted samples studied by Einasto, etal. (1990). 
On the other hand, if the galaxy distribution is hierarchical, the modified VPF, x = -ln(&)/ngV, 
exhibits a scaling behavior, in which case it is relatively insensitive to the sampling density. An 
additional problem in using the CfAl data to test the model is that the depth of the survey is 
only D N 60h-1 Mpc; it therefore does not contain the prominent r = 25hC’ Mpc void seen in 
the first CfA2 slice. As a symptom of this, the VPF is only reliably determined for &9h-’ Mpc. 

The galaxy statistics above are the observables we will investigate in the shell model. In the 
context of that model, there are additional features of the large-scale galaxy distribution which, 
although formally parameters of the model, are what might be called qualitative observables. - - 
These include the bubble volume filling factor, f = Il,hn,h, where l/,h is the mean shell volume 

- and n,h the mean number density of shells. Eyeballing the CfA2 slices, the shells appear to have 
a filling factor of order unity, and a typical radius x - 15h-1 Mpc. These rough estimates are 
confirmed by the numerical simulations of Ostriker and Strassler (1989), who find that the visual 
appearance and projected void probability of the first CfA2 slice can be reproduced if f = l.O- 1.5 
and fi = (13.5 f 1.5)h-’ Mpc. We will use these numbers as rough guides in studying the shell 
model below. (We note, however, that Ostriker and Strassler (1989) use a very different shell 
radius distribution from WOD: their model is closer to the case of equal size shells, discussed in 
511 below.) The other qualitative feature we note is that the bubbles are not completely empty 
of galaxies, and are therefore not to be identified one-to-one with voids in the pure sense. For 
example, the Bootes “void” contains 3 IRAS galaxies where 11 are expected in the mean (Strauss 
and Huchra 1988), while the CfA2 bubbles seem to have roughly 10% of the mean galaxy number 
density (Geller and Huchra 1988). On the theoretical side, cold-dark-matter models predict that 
“voids” comparable to the CfA bubbles have roughly 20 percent of the mean density (White, eta& 
1987). This qualitatively motivates the inclusion of an unclustered (or very weakly clustered) 
population of background galaxies in the shell model (see Section V). 

III. EQUAL SIZE SHELLS 

In the simplest version of the shell model, galaxies are assumed to be placed randomly on the 
surfaces of equal size shells. In this case, there are only two parameters in the model: the shell 
radius, Rshr and the volume filling factor, f, defined by 

f E $n,hR;h, 

where n,h is the number density of shells. We also assume that shells are randomly distributed 
in space, and are infinitely thin. Since the typical shell thickness in the CfA slices is 6&,S2 - 
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3h-lMpc (de Lapparent, Geller, and Huchra 1986), our calculations are trustworthy only on 
scales t-22 - 3h-‘Mpc. We verify this in Appendix A by calculating the two-point correlation 
function of galaxies on shells with finite thickness 6&h and comparing it with the case of infinitely 
thin shells. 

a) Two-Point Correlation Function 

The two-point correlation function is defined by 

6P = n,6V(l +&&r(r)]. (3.2) 

Here, 6P is the conditional probability that, starting at a given galaxy, another galaxy is found 
in the volume element 6V at separation r; ng is the number density of galaxies, related to the 
number density of shells by 

ng = n,h4~R;hNsh, (3.3) 

where N*h is the surface number density of galaxies on the shells. 6P gets contributions from two 
galaxies on the same shell (6Pb) and from two galaxies on different shells (6Pd); both are easily 
calculated: 

2?rrdrN,h if r < 2& 
0 if r > 2&h, 

6Pd = ng6V. (3.5) 

In writing the expression for 6Pd, we assumed the shells have a random Poisson distribution. 
Using the volume element for a spherical shell, 

6V = 4m2dr, (3.6) 

the two-point correlation function is then 

Ed’) = (ff+ g ; ;;I; (3.7) 

(This result was noted independently by Ostriker and Strassler (1989).) Note that the only non- 
zero component of ,&s(r) comes from two galaxies on the same shell. We also note the general 
feature that the correlation function vanishes for r > 2&h. 

Figure 1 shows the two-point correlation function for f = 0.8, 1.0, and 1.2. The two- 
point function for equal size shells has slope ^/O = 1, clearly smaller than the observed slope, 
ye = 1.8 f 0.2. The correlation length, ro = &/(6f), is also small: if the typical shell radius is 
R sh z 15h-lMpc and f = 1 (as suggested by the CfA2 survey data), then ro N 2.5h-lMpc, a 
factor of 2 below the observed value. The r -’ behavior of the two-point correlation function is 
a reflection of the two-dimensional nature of the galaxy distribution in this model. We suspect 
this is one of the reasons for the long tails seen in some of the simulations of BHS. However, since 
the two-point correlation function is cut off at the bubble diameter, a decreasing distribution of 
larger shell sizes is expected to steepen the slope (see section IV). 

b) Three-Point Correlation Function 
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The three-point correlation function is defined by 

6p = +%6%[1 +&g(b) + (gg(d + tgg(‘k) + c(ra, %‘-c)]. (3.8) 

Here, 6P is the conditional probability involving two steps that, starting at a given galaxy 1, a, 
second galaxy 2 is found in the volume element SV, at separation TV from galaxy 1 and a t,hird 
galaxy 3 is found in the volume element SV, at separation rb from galaxy 1 and r’c from galaxy 
2. In the shell model, there are three different contributions to 6P: 1) that from three galaxies 
on the same shell (6Pl); 2) that from two galaxies on the same shell and one galaxy on another 
shell (SPZ); and 3) that from three galaxies on three different shells (SPz). 

6P1 is given by the product 6P1 = 6Pl,l 6P1,2, where 6Pl,l is the probability of finding 
galaxy 2, and SP~,J is the probability of finding galaxy 3, given galaxies 1 and 2. SP?,, is obtained 
from Eqn.(3.4) by substituting r(l for r. The calculation of SPQ, given in Appendix C, involves 
spherical trigonometry, with the result 

dq,dr,N,h if Tb, rc < 2&h and Fah > 0 

otherwise 
(3.9a) 

where 
2 2 2 

Fabc G 2~5; + 2T5-; + 275’; - rarbrc rz - r;t - I-,” - __. 
R:h 

(3.9b) 

6P2 is the sum of three components: galaxies 1 and 2 sharing the same shell (SP2,1), galaxies 
2 and 3 sharing the same shell (SP2,2), and galaxies 3 and 1 sharing the same shell (6P2,3). 
Assuming the shells are randomly distributed, we find 

2m,dr,N,h x ng6V+ if I‘~ < 2&h 
if TV > 2&h 

where 6&b, is the volume element at separations l‘b and ?-e from two 
separated by T=. 6P2,2 and SP2,3 are obtained by permuting indices a, 
The volume element LTV,,,, derived in Appendix B, is given by 

6V,,h = 2?rPbddrbdrc. 
f-a 

Finally, 
6Pa = ni6V26V3, 

(3.10) 

given points which are 
b, and c in Eqn.(3.10). 

(3.11) 

(3.12) 

again using the assumption that the shells have a random Poisson distribution. Here, 61/2 = 
4xrzdr,, and SV, = SV,,. 

Summing 6P = 6Pl + 6Pz + 6Pa and comparing with Eqn.(3.8), after some manipulation we 
obtain the reduced part of the three-point correlation function, 

<(r,,, rb, r,) = 
I 

+ ‘6’,;r;,p;e” < 2R*h and Fan ’ ’ (3.13) 
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< corresponds to the component 6P1, i.e., it receives a non-zero contribution only from three 
galaxies on the same shell. The contribution 6P2 from two galaxies on the same shell and 
one galaxy on another shell constitutes the terms proportional to &,s(~,,) + &,(rb) + tgs(rc) 
in Eqn.(3.8), and it is obvious from Eqn(3.12) that three galaxies on three different shells give 
rise to the first (Poisson) term in Eqn.(3.8). Using Eqn.(3.7), the scaled three-point correIation 
fun&on (2, defined in Eqn.(2.3), becomes 

Q(‘a,q,, rc) = { $%$J”r: ;t;pe;;;;e” < 2% and Fabe > 0 (3.14) 

Note that Q is independent of the shell filling factor f, since 6 cx l/f2 and ,&(T) cc l/f. 

Since Q (or C) is a symmetric function of its arguments, we can set ra < rb < rc and introduce 
a new set of variables 

r = f-a, u =Tb/k, 2, = (b - ‘b)/‘b, 
u>l, O<lJ<l, 

(3.15) 

following Groth and Peebles (1977). In Figure 2, we plot Q as a function of r: Q was calculated 
for 0 < rg, rb, rc < R,h and averaged over the two variables u, z) over this range. The resulting 
Q is quite flat, but the amplitude (Q < 0.4) is somewhat small compared with the observed value 
(Q N 1.0 & 0.4). The range of separations, i.e., values of ph, ‘6, P‘~, over which Q was calculated 
and averaged is somewhat arbitrary. However, the resulting Q depends only weakly on the range 
of values chosen, and we could not reproduce the observed amplitude with any range of values. 

c) Peculiar Velocity Correlation Function 

So far, we have focused on the purely static, geometric features of the shell model. To calculate 
the peculiar velocity correlation requires an additional assumption: the dynamics of galaxies. We 
assume that shells are uniformly expanding or contracting with velocity Vsh and that the peculiar 
velocities of galaxies arise in part from this radial motion of shells. The velocities of the shells 
depend on the cosmological model. For example, for an isolated self-similar void in an R = 1 
universe, the typical expected shell velocity is of order v,h = H&h/5 = 300(&h/18h-1Mpc) 
km/set (Bertschinger 1983; Ikeuchi, Tomisaka, and Ostriker 1983). However, in an open universe, 
peculiar velocities decay, and in a universe dominated by collisionless dark matter, the gravity of 
the dark matter will slow down the shell expansion for some time. In addition, since the volume 
filling factor of shells in the CfA2 survey is estimated to be of order unity (Ostriker and Strassler 
1989), typical shells have several neighbors with which they have interacted (Yoshioka and Ikeuchi 
1990). Presumably, once they collide, the coherent shell motions are damped out. Thus, since the 
present shell velocities may well be small on the Hubble scale, the estimate of Vsh above should 
be taken as an upper limit. 

The dimensionless peculiar velocity correlation functions are defined by 

&, 5 
< $(Fy q,(P + 7) >r’ 

‘:h ’ 
(3.16) 
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f,tb) = 
< Cl(P) tTl(P + 7) >r’ 

‘:h ’ 

fdr) s 
<qiq.q?+F)>~ 

‘:h ’ 

and the relative peculiar velocity is defined by 

“12(r)? s 
< C(?) - C(P + 7) >r’ 

V 
1 

ah 

(3.17) 

(3.18) 

(3.19) 

where 511 and Gl are the parallel and perpendicular components of peculiar velocity with respect 

to the line joining two galaxies separated by ?. Here, fVV(r) and f&(r) are the parallel and II 

perpendicular components of Era,(r), so fVV(r) = f!,(r) + C&(r). Note that II(r) = f!,(r) Vzh 

is the parallel component of the velocity correlation tensor, and ZC(r) = f&(r) . Vzh is twice 
the perpendicular component. (For discussion of the velocity correlation tensor, see Davis and 
Peebles 1977; G&ski 1988; Szalay 1988; GDSWY; GJO; Kaiser 1989.) 

As with the spatial two-point correlation function, the peculiar velocity correlation function 
and the relative peculiar velocity naturally split into two components: one from two galaxies on 
the same shell and the other from two galaxies on different shells. For two galaxies on the same 
shell separated by distance P, elementary trigonometry gives 

iTl(ti) tTL(? + 7)1Jdam = 
(l-4;: ) 

- v$,, 2 
sh 

G(2) q? + F-jsonre = 

v’(?) - c(? + ?)!a,, = j&f,. 
sh 

(3.23) 

Assuming the distribution of shells is random, the contribution from two galaxies on different 
shells vanishes on average. Hence, the parallel component of the peculiar velocity correlation 
function becomes 

fj,(T) = q/F) . q/v + %ame 

VZh (1 :~::~r,) ’ 
(3.24) 

where the last term is the fraction of all galaxy pairs, separated by distance r, which are on the 
same shell. Using equation (3.7), this becomes 

&) = -pg% if;; ;z. 
{ 8 (3.25) 



Similarly, 

(3.26) 

(3.28) 

Figure 3 shows the peculiar velocity correlation function and the relative peculiar velocity for 

f = 0.8. Here, the dot-short dashed curve corresponds to &(r) (II/V$,), the dot-long dashed 

curve is t&(r) (2C/Y$, the short dashed curve is fvVV(r) ((II + 2C)/V$, and the solid curve is 
012(r). The magnitude of the velocity correlation function and the relative peculiar velocity are 

smaller if the filling factor f is larger. As expected from the shell geometry, &,(r) (II) is abvays 
negative and r&(r) (C) is positive. 

These results can be compared with recent analyses of large-scale peculiar velocity obser- 
vations (GDSWY, GJO), in particular, the residual components II and C averaged over the 
range 10h-l - 30h-1 Mpc, given in Eqn.(2.9). Since the residual field may come from sev- 
eral sources, we use these values as upper limits on the magnitude of the shell velocity. Even 
qualitatively, the shell model velocities do not accord well with the observations: although the 
parallel component II(r) for the spiral sample is negative, it is not a monotonic function of 
r, in contrast with the shell model. More important, the shell model prediction for the per- 
pendicular component, averaged over the same range in r (assuming Rsh = 15h-’ Mpc), is 
C N 0.4(100 km/sec)2(P&/300 km s~c-~)~, while f&(r) (C(r)) for spirals is negative or consis- 
tent with zero. For the shell model value of C to agree with the observations at the 20 level, 
the shell velocity must satisfy P&s200 km/set = H&h/7.5. In this case, however, the shell 
model value for II is significantly smaller than the observations, so that shell motions could not 
dominate the residual velocity field. (Peebles (198813) h as already noted difficulties with the local 
velocity field if one interprets it in terms of the explosion model.) 

d) Void Distribution 

The most striking feature of the CfA slices is the preponderance of large voids: this is, after 
all, the motivation of the shell model. Thus, a plausible shell model should accurately reproduce 
the void distribution. In the shell model, the void probability function (VPF) &(r) is just the 
probability that a randomly placed volume V = (4a/3)r3 is empty of bubble ualls. In a more 
realistic model, galaxies would not be spread uniformly on a shell, but would have a pat,chy 
distribution on and within the bubble surface; in this case, the volume V could have bubble walls 
crossing it which happened to be empty of galaxies in V. We assume this makes a negligible 
correction to the VPF on scales 2 a few h-l Mpc. 
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The probability of a void of radius P depends on whether r is larger or smaller than the 
shell radius I&. If r 2 &a, then &(r) is just the probability of having no shell centers within a 
volume V’ = (4?r/3)(&,+r)3. On the other hand, if r 5 &,, the VPF is given by the probability 
of having no shell centers within a volume V’ - V”, where V” = (4x/3)(R,h - r)3. Since the 
shell centers have a random Poisson distribution, the probability of finding no shell centers in a 
volume G is just exp(-n&q). Thus, the VPF is given by 

exp [-f(l+&)3] if T 2 &, 
40(f) = 

exp >I if 1‘ < R,h 
(3.29) 

In Figure 4, the resulting void probability function is plotted for f = 0.8 (solid curve) and 
1.2 (short dashed curve). For comparison, the VPF for a random Poisson distribution of galaxies 
is also shown (dot-short dashed curve). To place the latter in the same figure, we have chosen 
ngRzh = 0.01h3Mpc-3. (15h-lMp~)~ = 33.75, where ng is the mean density of galaxies in typical 
samples. 

Care must be taken in comparing the shell model VPF with the data available from redshift 
surveys. The shell model result for the VPF is apparently inconsistent with the analysis of the 
CfAl data by ML: they find the observed VPF approaches the Poisson form at small r, but 
is enhanced over Poisson for r > lh-l Mpc. Unlike the data and most models for large-scale 
structure formation (Fry, etal., 1989), the VPF for the shell model does not approach a Poisson 
distribution at small r: the slope of the shell model VPF at zero radius is -6f/R,h, while realistic 
distributions have zero slope at r = 0. This difference, however, is an artifact of the assumption 
of zero-thickness bubbles: clearly Eqn.(3.29) is not valid for r&6&, N 2 - 3h-’ Mpc. (It is 
straightforward to show that the slope and curvature of the shell model VPF with finite thickness 
shells approach zero for I‘ << 6&h.) In Fig. 4, assuming Rsh = 15h-1 Mpc, this implies that the 
shell model curves cannot be extrapolated below P/2&, = 0.1. On the other hand, the plots of 
ML only extend up to r = 8.7h-1 Mpc, corresponding to r/2&, = 0.29 in Fig. 4. Over the range 
3h-1 Mpc < r < 7h-’ Mpc where they can be reliably compared, the shell model VPF with 
f = 0.8 and R,h = 15h-1 Mpc agrees with the results of ML to within a factor of 2, although 
the shell model VPF is flatter, with a tail extending to larger radii. It is difficult to estimate the 
significance of this, since the figures of ML display no error bars. However, as noted in Section 
II, the value and slope of the VPF are very sensitive to fluctuations in the mean density of the 
sample (Einasto, etal., 1990), and for the CfAl survey, the density fluctuations are estimated to 
be of order unity (de Lapparent, Geller, and Huchra 1988). 

Alternatively, we can consider the scaled void probability (e.g., Fry 1956), x = -ln(&)/q, 

where ?$ = qV is the mean number of galaxies (in the sample) in a volume V = (4x/3)r3. For 

a hierarchical galaxy distribution, x is a function only of m, where f = q2 Jv dVldVXn/T2. 

For the case at hand, we have m = 47rR,h~r2/15f, so that 

-+~)-l+~ (3.30) 
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The second term here is just twice the inverse number of galaxies per shell; since the VPF data 
only extends up to P z 9h-1 Mpc and we assume R,h N 15h-’ Mpc, Eqn.(3.29) shows that we 
can neglect the second term in Eqn.(3.30) when comparing to the CfAl data. Thus, over the range 
that it can be compared to the data, the shell model VPF exhibits the scaling form expected of a 
hierarchical distribution to excellent approximation. Since x 5 1 by definition, Eqn(3.30) is only 
valid form > 18/15. For the CfAl survey with ‘ij; = 0.01h-3Mpc-3, m N 1.5(r/h-‘Mpc)‘.23 
(Fry 1986), so m > 18/15 corresponds to P > O.Sh-1 Mpc; clearly this is not an important 
limitation, since we do not trust the shell model on scales rghR,h N 3h-’ Mpc anyway. On 
scales rk3h-’ Mpc, corresponding to m > 5.8 in the CfAl survey, the shell model function 
x(m) lies below the data curves for x from both the CfAl and Perseus-Pisces surveys (ML; Fry, 
&al., 1989). That is, the shell model predicts an excess of large voids compared to the data. The 
shell model function x does lie above the ‘minimal’ model of Fry (1986), as expected. 

IV. DISTRIBUTION OF SHELL SIZES 

In this section, we consider models in which shells have a range of radii, generalizing the results 
of the previous section. The expressions we will derive for the spatial and velocity correlation 
functions and the void probability function hold for an arbitrary distribution of shell radii. As an 
important application of these general results, in the figures, Tables, and Appendix D, we display 
results for a power law distribution of shell radii. 

Let n,h(R)dR be the number density of shells with radii between R and R + dR. The galaxy 
surface number density, A$h(R), and the peculiar velocity due to shell expansion or contraction, 
YSh(R), are generally functions of the shell radius R as well. Then the number density of galaxies 

ng = 
/ 

,,O) 4~R2NsdR)w,(R)dR, 

and the shell volume filling factor is 

f =J,“i rR3n,h(R)dR. 

It is useful to introduce some additional definitions to streamline the notation in this and 
subsequent sections. The number density of shells with radius R > r/2 is given by 

- 
%h(f/z) = J r;2 %h(R)dR. (4.3) 

The nth moment of the galaxy surface density, averaged over shells with radius R > r/2 is defined 
bv 

qJr/2) = m;r,2) &)%(R)n,h(R)dR. * 
Similarly, we define a shell radius moment, 

- 
R&(r/2) = 

1 
/ O” R”~(+.,h(R)dR, 

373-/miJ~/2~ r/2 
(4.5) 
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and a shell velocity moment, 

- 
Q&(7-/2) = 

1 
- / 

O” V;,(R)Rmiy,2,(R)n,h(R)dR. 
R3r/2)N,2h(r/2)~(7-/2) ~12 

(4.6) 

Using these definitions, the galaxy number density and shell volume filling factor become 

ng = 47r~(0)N,~(o)n,h(o), (4.7) 

f = $i-(O)%(O). (4.8) 

Although we will derive the correlation functions and VPF for an arbitrary distribution of 
shell radii, it is also useful to focus on a particular class of models (WOD, BHS): a power la,w 
distribution of shell radii, with cutoffs at a maximum and minimum radius. Before discussing 
the general results, we now specify the parameters of the power law model. In this case, the 
differential shell number density is 

w,(R) = ;.h,o(R/h& o ifGin<R<Rmoz 
otherwise 

(4.9) 

We also assume the galaxy surface number density and shell expansion velocity are power law 
functions of shell radius, 

N,/,(R) = %h,o(R/Rm-dr (4.10) 

ysh(R) = v..h,o(R/Rmz)r. (4.11) 

The various shell density, surface density, shell radius, and shell velocity moments defined in 
Eqns.(4.3-4.6) are given explicitly in Appendix D for this model. 

In the power law model, the spatial distribution of galaxies depends on five independent 
parameters: f, 01, R,,, R,,,inJRmz, and p. None of these parameters is well determined 
from observations, although the redshift surveys roughly suggest expected values for several of 
them. We will use the observations and the theoretical work of WOD as guides to the relevant 
regions of parameter space to explore. From the first CfA2 slice, the shell volume filling factor is 
estimated to be f IT 1 - 1.5 (Ostriker and Strassler 1989), while WOD used f = 0.8 - 1.2 to fit 
the cluster correlation function (the filling factor quoted in WOD is lower than this, because they 
only included shells with radius in the range &s/2 < R < R,, in their definition of f). The 
largest voids seen in recent redshift surveys have diameters of roughly 50 he1 Mpc, suggesting 
a maximum shell radius of order R,, _ N 30h-‘Mpc. However, since these voids have sizes 
comparable to the depth of the survey, potentially larger structures could have been missed. For 
example, the deep pencil-beam surveys suggest the existence of underdense regions with scales 
up to 130 h-’ Mpc (Peterson, el al. 1986; Koo, Kron, and Szalay 1987; Broadhurst et al. 1989). 
Therefore, this estimate of R,, is likely a lower bound to the true value. In the CfA2 data, the 
shell thickness and mean galaxy separation inside shells appear to be roughly independent of shell 
diameter (de Lapparent, Geller, and Huchra 1988); this suggests that the galaxy surface density 
is approximately constant, i.e., p N 0. On the other hand, if shells are formed by explosions, then 
the shell mass, and thus the number of galaxies per shell, should be proportional to the bubble 
volume swept out, which would imply p II 1. We will therefore consider values of /3 between 0 
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and 1. The number of large voids in the redshift surveys is currently too small to determine the 
shell distribution exponent o (de Lapparent, Geller, and Huchra 1988). On the theoretical side, 
WOD showed that the observed cluster mass function and cluster two-point correlation function 
can be fit reasonably well if o/ N 4. In this case, the shell distribution would be approxinmtely 
scale-invariant, since each logarithmic decade in R makes an equal contribution to the filling 
factor f. For this choice of (Y, the number density of galaxies is dominated by the smallest shells 
if p < 1. On the other hand, the CfA2 results indicat~e that the the largest voids lead to significant 
fluctuations in the galaxy number density across the sample (de Lapparent, Geller, and Huchra 
1988), suggesting that perhaps 3 + p - 01 > 0. However, we will see below that this condition 
does not yield a reasonable galaxy two-point funct~ion, so we will not impose it. (The best fit 
models below violate this condition weakly.) For the reasons cited above, the ratio &i,/Rma 
is also poorly determined from observations. In their models, WOD somewhat arbitrarily set 

RminlRmz = l/8, but they argued that the statistics of clusters are insensitive to it. We will 
see that the statistics of galaxies are sensitive to this parameter, and use both Rmin/Rmz = l/8 
and l/l5 to span a reasonably broad range of plausible values. 

There are two additional parameters which enter into the peculiar velocity correlation func- 
tion, y and va)bhO. Following the work on expanding positive energy shells, we will assume the 
peculiar expansion velocity of each shell is a fixed fraction of its Hubble velocity, i.e., y = 1. 
The parameter Vd+ which fixes the magnitude of the peculiar velocity of galaxies, only appears 
as an overall normalization constant in the peculiar velocity correlation function, so it may be 
scaled out of the problem. Of course, it enters when comparing the model with observations. To 
summarize, in this and subsequent sections, we will investigate the following ranges of parameter 
values: 

0.8SfS1.2, 

3.5&r&,4.5, 

R - 30h-‘Mpc, maz- 

Rmin = 2.0 and 3.8h-‘Mpc, 

OlPSl, 
y = 1. 

(4.12) 

a) Two-Point Correlation Function 

The calculation of the two-point correlation function involves averaging sgg(r) for the case 
of equal size shells [Eqn.(3.7)] over shells with different radii. For randomly distributed shells, 
the contribution comes from two galaxies on the same shell with radius R > r/2. Hence, for 
r<2Gaz, 

&J(r) = l Jrn 4?rr=drng. ng r/2 
2nrdrN,h(R) 4rR2Nsh(R)n,j,(R)dR 

1 ~(~~~(~/~~~W) n,h(‘/2) =- 
6fr q=(o) N,‘h2(0) n,h(O) ’ 

(4.13) 
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where Eqns. (4.7) and (4.8) have been used. For T > 2R,,, the correlation function tsg(~) 
vanishes, and it is positive on all smaller scales. This suggests that the galaxy correlations 
recently found on large scales by Maddox, etal., (1990) may reflect the bubbly structure of the 
galaxy distribution. 

For the power law distribution of shell ra,dii, we find 

{ 

llfr if I‘ < 2Gi, 

Fos(~) csz 
l-(r/2&.,)3++- 

f r(l-(r/2R&)3+~@~ if 2&in < r < 2Rma (4.14) 

0 if 2RmZ < r 

Thus, t&r) has a simple power law form for &in < Rmaz and 2GinSr << 2R-z, 

t&f-) a { $“- ;; ; ; I; I ;;;;, (4.15) 

For example, if 01 = 4 and p = 0, the slope of the correlation function is y. = 2, close to the 
observed value. Figures 5a-d show the two-point correlation function for several values of the free 
parameters. Noticeable features in the plots are: 1) a sharp break or kink at T = 2&;, from 

t *I‘ -’ to a steeper power law, and 2) the steepening of the slope of to8 at large separation T. 
The first feature is somewhat artificial, since it results from the sharp cutoff in the number density 
of shells at the minimum radius hi,; a smooth cutoff in the shell distribution would round off 
the kink into a broad shoulder. The values of the slope ‘yo and correlation length r0 for the various 
models are listed in Table 1. These values were determined by fitting the correlation function 
between l/20 5 r/2Rmaa _ < 1 5 to the power law form in Eqn.(2.1). For R,, = 30h-IMpc, 
this range corresponds to 3h- i Mpc 5 r 5 12h-lMpc. (Note that the ‘true’ correlation length 
To, defined by egg(io) = 1, differs slightly from the value of r0 obtained from the power law fit.) 
The slope y. is steeper if more galaxies belong to smaller shells, that is, for larger CY, smaller p, 
and smaller Rmin/R-z, but then the amplitude is smaller, as expected. Although the observed 
slope (r. N 1.8) can be reproduced by the power law model, Table 1 shows that, for f = 0.8 - 1.2, 
the correlation length rO/2Rmz _ N 0.03 - 0.04 is still roughly a factor of two below the observed 
value, r. = 5 rt lh-lMpc or ro/2Rmz = 0.08 f 0.02 for hz = 30h-‘Mpc. The observed 
clustering strength could be reproduced if f were reduced to f N 0.4, but this is substantially 
lower than the filling factor indicated by the redshift data. In the next section, we will see that 
this problem is alleviated by including cluster galaxies at shell intersections. 

b) Three-Point Correlation Function 

As with the two-point correlation function, the reduced part of the three-point correlation 
function, <, is found by averaging Eqn. (3.13) over shells with different radii. The only non-zero 
contribution to C comes from three galaxies on the same shell with radius R > max(r,, Q, r,)/2. 
Thus, for ra, Q, rc < 2R,,, 

c(ra, ‘b, Tc) =J:=h.wJ/= 
2w&‘&~h(R) Ed+&, .4~R=N,h(R)%,(R)dR 

4m$dr,ng. 2xydrbdrcng . ng 
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where 

Fabc = 
2r;r; + 2rg + 2rv - ca rt - T;t - ‘,4 T=Tg 

R4 
-AL.--. 

R6 1 (4.16) 

Here, 6Pr 2 from Eqn(3.9) and 6V+ from Eqn.(3.11) have been used. In this expression, the 
integration is only to be carried out over the range where F,& > 0. Using Eqns.(4.7) and (4.8), 
this can be rewritten as 

1 g=(o) m 

6(Tat Tb> TC) = 9HP ~3(o)N,‘,3(o)s(o) / 
N,h(RhdR)dR 

m4ws,4/= ez 
(4.17) 

In Figures 6a-d, the scaled three-point correlation function Q is shown as a function of 1‘ for 
several values of the power law model parameters (see Eqn(3.15) for the definition of 7). Q was 
calculated from Eqns.(2.3), (4.13), and (4.17), for 0 < ra/2Rmz, rt,/2RmZ, r,/2Rmz < l/2, 
and averaged over the variables u and ‘u. For rslOh-lMpc, corresponding to r/2RW,g0.17 if 
R mar = 30h-lMpc, Q is fairly flat, with values in the range 0.4sQg0.8. This is in reasonable 
agreement with the observed value, Q = 1.0 f 0.4. For most of the parameter range, Q is flat 
for P < 2R+n, has an upward break at T = 2&i,, to an increasing function of r, and eventually 
falls to zero at r = 2R,,. (Again, the break would be rounded off in models with a smooth 
lower cutoff to the shell radius distribution.) Thus, the shell model predicts that Q will show an 
upward trend when it is measured reliably out to larger separations in the future. 

c) Peculiar Velocity Correlation Function 

To obtain the velocity correlation functions, we average Eqns.(3.25) to (3.28) over the shell 
radius distribution. For r < 2Rmz, 

r~,c 
T 

) = Jy2 (-i&z) w .2xTN..h(R) .4~R=Nsh(Rh(R)dR 

4iTT=TQ . ng . (1 + tgg(T)) 
(4.18) 

(*( 
vu T 

)= J72(1-&)~ .2xrN,h(R) 4nR2Ndh(R)n,h(R)dR 

4?rr=ng. ng (1 + tgg(r)) 
(4.19) 

u12(T) = 
J72 A?&?. 2nrN,h(R). 4nR=N,h(R)n,h(R)dR 

47rr=ng ng. (1 + <gg(T)) 
(4.20) 

For r > 2&s, the peculiar velocity correlation functions and the relative peculiar velocity are 
zero. Using Eqns.(4.7) and (4.8), we find 

d”(4 = 
1 g(O) $?h(+) n,h(‘/2) 

- - 
‘3f~(l + tgdT))q2(o) N,h2(o) %(O) 

(4.21) 



~“v(T) = dL(T) + r,tcT) 
1 g(O) N,2h(d2)it;i;(7-/2) 

2)12(T) = 6f(l + (,,(+z a=(o) n,h(O) 1 
(4.23) 

(4.24) 

Figures 7a-d show the peculiar velocity correlation function and the relative peculiar velocity 
for several values of power law model parameters. For larger 01 and smaller B, the velocity 
functions are smaller, since more of the galaxies belong to smaller shells. The overall features 
of the velocity functions are similar to those for the case of equal size shells (compare Figure 
3), except that here the peculiar velocity functions smoothly approach zero as r + 2R,,. To 
convert to physical units, the y-axis in Figure 7 should be multiplied by V$, (for the correla,tion 

functions) or Vsh,o (for the relative peculiar velocity), where V&e is the expansion velocity of the 

largest shell. For example, in an explosion model with R,, = 30h-1 Mpc and shell speed 20% 
of the Hubble velocity, we expect V&e _ N 600 km/set. For this value of R,,, the z-axis in Fig. 

7 should be multiplied by 6000 km/set (60h-’ Mpc). For these values, the parallel component 
of the shell velocity tensor is in reasonable accord with the data: for example, for the parameters 
of Fig. 7b, II(r = 1000 - 3000 km/set) N -0.56(100km/sec) ‘. However, as for the case of equal 
size shells, the perpendicular component has the wrong sign and, for the parameters given above, 
too large an amplitude in comparison with the data. For the model in Fig.7d to agree with 
the observed C to within 20, the expansion velocity of the largest shell must satisfy v,h,,~280 
km/set N O.OSH,R,,, substantially less than the value expected for an isolated shell in an 
R = 1 universe. Given this upper bound, the parallel velocity component due to shells would be 
observationally negligible. For other choices of shell model parameters, the constraint from C is 
not as severe; e.g., for the parameters of Fig. 7a, 20 agreement with the perpendicular component 
implies v&&475 km/set N 0.16H&,,. However, in all cases in which C is consistent at this 
level, the parallel component II has insufficient amplitude to explain the residual velocity field. 

a!) Void Distribution 

For a distribution of shell sizes, the void probability becomes 

40(r) = exp [- (Js v’n,h(R)dR + /rm(l” - I/“)n,h(R)dR}] , (4.25) 

where, as in the case of equal size shells, V’ = (4n/3)(R + r)3 and V” = (4n/3)(R - r)3. Note 
that, for a discrete distribution of shell sizes, the VPF is just the product of the void probabilities 
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for each shell radius. Using Eqn.(4.8), we obtain 

exp [-$ (@(o) + 3@(0)r + 3@(o)T2 + T”)] if T 2 Ryz 

ew 
do(T) = ( 

‘G&& - 3@(7 

,exp [-2& (3G(o) .’ 

[ - & / (@(o) + 3q(0)T + 3@0)T= + T3) 

-)T + 3G(r)r2 - r3) 11 (4’2G) if R,i, 5 T 5 Rmz 
’ I, 

r + T”)] if r 5 R&n. 

In Figure 8, the void probability function is plotted for several values of power law model 
parameters, keeping kin JR-z = l/8 fixed (4 upper curves). The VPF is most, sensitive to the 
volume filling factor f, with additional weak dependence on the size distribution exponent 01. For 
comparison, the void probability function for a random Poisson distribution of galaxies is also 
shown (dot-short dashed curve). To place the latter in the same figure, we have taken ngRkz = 

0.01h3Mpc-3(30h-1Mpc)3 = 270, where ng = 0.01h3Mpc -3 is the mean galaxy density in a 
typical CfAl subsample (ML; Hamilton 1985). The VPF for the CfAl data lies somewhat above 
the Poisson curve, but well below the shell model curves. For example, at T = 6h-1 Mpc, 
corresponding to r/2R,, = 0.1 for our adopted Lzr ML find &(T = Gh-‘Mpc) N 0.1 for 
their volume-limited CfAl subsample. For the shell model to yield a VPF this low, the filling 
factor would need to be fk5 - 6, absurdly high. As we show in the next section, this discrepancy 
may be partially or wholly remedied by allowing for a small fraction of the galaxies to lie off the 
shells. 

V. CLUSTER AND BACKGROUND GALAXIES 

The models considered in the previous sections lack two important ingredients of the observed 
galaxy distribution: clusters of galaxies and field galaxies which do not lie on shells. To make 
the model more realistic, we now place a fraction of galaxies in clusters at the points where three 
shells intersect and also allow for a homogeneous population of background galaxies. The number 
densities of shell, cluster, and background galaxies are nSg (given in Eqn.(4.1)), ncg, and nbg 
respectively. This modification introduces several additional parameters into the shell model: the 
number of galaxies in a cluster which forms where three shells with radii RA, Rg, and Rc meet, 
N&R~, Rg, Rc); the fraction of cluster galaxies, A& G ncg/(nbg + ncg + nbg); and the fraction 
of background galaxies, Mb G nbg/(n Sg + ncg + nbg). we note that an important limitation of 
this model is the treatment of clusters, like galaxies, as point-like objects with zero spatial extent; 
this follows from the assumption of infinitely thin shells. As a consequence, our statistics are not 
sensitive to the internal density profile of clusters, and our results are not valid on scales smaller 
than the typical Abel1 radius, r~ 11 1.5h-1 Mpc. 

Let n,l(R~, Rg, Rc)dRAdRBdRc be the number density of clusters formed from three 
spheres with radii in the intervals dRA, dRB, and dRc. From Kulsrud and Cowley (1989), 
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and the total number density of clusters is 

1 
3 

n,h(R)R=dR . (5.2) 

(Here, the factor of 6 is divided because, in integrating over (RA, RB, Rc), the same situation is 
counted six times.) Therefore, the total number density of cluster galaxies is 

ncg= $/omdRAjumdRg/gm dRcNcl(RA, Rg, Rc)n,h(RA)n,h(RB)n,h(Rc)R~R2BR~. 

(5.3) 

We assume that the number of galaxies per cluster has power law dependence on the shell 
radii RA, Rg, and Rc, 

~~RA,RB,Rc) =&,o(+-)" (+-)"(&)'. 

As noted below, this assumption is physically plausible, and we expect it to hold independently 
of (and more generally than) the assumption of a power law distribution of shell radii. Using the 
notation introduced in Eqns.(4.3) to (4.6), n,l and ncg can then be written as 

4714 
nd = v’i;7;3(o)g3(o), 

n 
4~4 Ncl,oq3(o)R;+63(o) 

cg = - 
3 Rc,, ’ 

We can choose the three independent additional parameters of the model to be 6, MC, and 
Mb (note that NC1 o is related to nCg and thus Me, so it is not independent). We will take 6 = 1 
on the assumptions that (a) the mass of a cluster at the intersection of three shells with radii 
RA, Rg, and Rc is proportional to RARBRc, and (b) th e number of galaxies in a clust,er is 
proportional to the mass of the cluster. A simple physical argument for assumption (a) is given 
by WOD. Assumption (b) follows if the galaxy mass function is independent of cluster mass. 
Observations indicate that the fraction of galaxies belonging to rich clusters and their tails, MC, 
is between 5% to 20% (e.g. , Bahcall 1986). S earches for a spatially homogeneous (background) 
field population in galaxy catalogs have proved negative, with resulting quoted upper bounds 
Mb < 0.18 (Soneira and Peebles 1977) and Mb < 0.05 - 0.1 (Chincarini 1978; Vettolani, de 
Sousa, and Chincarini 1986). For our purposes, it is not crucial that the background galaxies be 
completely unclustered (we assume this only for calculational convenience), but it is important 
that they be allowed to populate regions other than the shell surfaces. Therefore, we do not need 
to identify background galaxies precisely with the spatially homogeneous field. From the galaxy 
density in the underdense regions of redshift surveys, we impose the rough upper limit MbsO.2. 
Reiterating, the ranges of the values of the additional parameters considered in this section are 

6 = 3, 

McSO.2, 

M&,.0.2. 
(5.7) 
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a) Two-Point Correlation Function 

Since there are now three galaxy populations, the two-point correlation function can be decom- 
posed into nine components: shell galaxy-shell galaxy, <ii(r); shell galaxy-cluster galaxy, [is(r); 

shell galaxy-background galaxy, .$(r); cluster galaxy-shell galaxy, f::(r); cluster galaxy-cluster 

galaxy, [i’,(r); cluster galaxy-background galaxy, fib,(r); background-shell, [ii(r); background- 

cluster, f,“,(r); and background galaxy-background galaxy, f::(r). S ince background galaxies are 
assumed to be randomly distributed, five of these components vanish, 

g(T) = f;;(T) = f;;(v) = g(r) = f,“;(r) = 0. (5.8) 

Also, since the two-point correlation function is invariant under intercommutation of the galaxies 
in a pair, f;;(r) = [ii(r), etc. Hence, the two-point function is 

fgg(T) = f;;(T) + 2f3r) + f;;(r). (5.9) 

The shell-shell component, f;;(r), is obtained by multiplying the shell galaxy two-point 

function, given in Eqn.(4.13), by A4:, 

f;;(r) = M,” 1; 2ar~V,~(R) .4~f?N&n,W] / (4rr’nsg I %g) 

Here, it’s is the fraction of shell galaxies (M, = 1 -MC- Mb). The cluster-shell component e::(r) 
is derived by counting the number of shell galaxies at distance T from a cluster and avexeging 
over clusters with different numbers of galaxies. Using Eqn.(S.l), 

f;;(r) =M.M.[4n4~~dR~/omdRsJ0mdRC2nrN,h(RA).Ncl(R~,R~,R~) 
(5.11) 

x ~,~(RA)~,~(RB)R~~(Rc)R~R~BR~C 1 /(4~~2w'%)~ 

Similarly, the cluster galaxy-cluster galaxy component f,““,(r) is derived by counting the number 
of cluster galaxies at distance r from a cluster and averaging over clusters with different numbers 
of galaxies. Using the cluster-cluster two-point correlation function given in Kulsrud and Cowley 
(1989), we have 

f;(T) = g;‘(r) + <y(r) + fgJI1(r), (5.12) 

where 
CC,1 

fw (r) = nzg 2r r/2 
M:~jrndXA~~dRg~~dRCN:l(RA,RB,RC) 

~n.n(R~)n,h(R~)n,h(Rc)~-~) @-G)t 

(5.13) 
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f;;%) =~~~lzdRA~~dRB~wdRcjomdR~N=~(R~,R~,R~)~~(R~,R~,Rg) 

2 2 4 

x ~,~(RA)~,~(RB)~,~(Rc)~,~(RD)R~R~D 12% + R:% + R%% - G , 
) 
(5.14) 

f ;;I*+) ~3% L; dRA iw dRB J,” dRc Am dRD Jm dRENcl(R.4, RB> Rc) 

xN&RA,RD, RE)"~~(RA)~,~(RB)"~~(RC)~,~(R~)~,~(RE)R~R~BR~R~DR~E. 
(5.15) . 

Here, f$“(r), f$‘(r), and Egg ==T 1 T are the contributions from two cluster galaxies sharing three, 
two, and one common shell, respectively (see Kulsrud and Cowley 1989 for details). 

Using Eqns.(4.7) and (4.8), the two-point function components can be written 

fsstr) = M,2 ~(0@%/2) N:d~P) 71~h(~/2) - 
99 6fr 2 

g (0) N,lh2(0) n,h(O) ’ 

f”“(r) = MeMS~(0)R~+6(r/2)~t~/2)~tr/2) 
99 

-- 
2fr @(0)R;+6(O) Nib(o) -to) ’ 

z&f2 @3(0)R;s(r/2) (R;+“(T/~) - $$(~/2))‘~+,~) 

f;$‘(d = 3T2;, 
R;+66(0) n,h3(0) ’ 

8M2 G2(0) (3=(,/Z) - $&/2)) (F(r/Z) + 3$X3,/2)) 

f,““dY’) =?r2f;T2 
R;+64(0) 

- 
x %h2(r/2) 

- 
%h2(0) ' 

Ecc,~~~crj = 3M:@W;+26(+) n,h(‘/2) 
99 2fr - - 

Rif6’(0) %h(O) . 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

Figure 9 shows the two-point correlation function for several values of power law model 
parameters. Here, the contribution from cluster galaxy-cluster galaxy pairs dominates on small 
scales, and the kink at T = 2&in is less visible. The slope y0 and correlation length r0 
of fgg(r) are listed in Table 2. These values were determined by fitting the data between 
l/20 5 r/2&s 5 l/5 to the power law form in Eqn.(2.1). The effects of placing N 20% of 
the galaxies in clusters are to increase the correlation length by a factor of N 1.5 - 2, and to 
increase the slope if it is smaller than N 1.4 - 1.5 but decrease it otherwise. Placing N 20% of the 
galaxies in a random, uniform background has a less dramatic impact on the two-point function, 
merely decreasing the correlation length slightly (up to N 20%). To reproduce the observed 
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slope of the correlation function, smaller values of p and &i,/Rmz are preferred (i.e., a higher 
proportion of galaxies belonging to smaller shells). The results indicate that both the observed 
slope and correlation length can be reproduced in the shell model with o N 4, R,, N 30h-‘Mpc, 
R,,JRmZ N l/15, p N 0, 6 21 1, and MC - 0.2. 

b) Morphological Dependence of the Two-Point Correlation Function 

Since the cluster component and the field (shell and background) component of galaxies are 
identified separately, it is natural to consider the morphological dependence of the two-point 
correlation function in the shell model. As discussed in 511, there are more spiral galaxies in the 
field but ellipticals predominate in clusters. Here, we assume that 95% of spirals are shell galaxies 
and 5% are cluster galaxies and that 67% of ellipticals are shell galaxies and 33% are in clusters. 
For instance, if - 85% of all galaxies are field galaxies, among which - 65% are spirals and - 20% 
are ellipticals, and if - 15% of galaxies are in clusters, among which - 20% are spirals and - 60% 
are ellipticals, then the fractions above are obtained. 

Figures 10 and 11 show the resulting two-point correlation functions of spiral-spiral pairs 
and elliptical-elliptical pairs for several values of power law model parameters. The values of 
y. and r. for the corresponding two-point functions are listed in Table 3. Again, these values 
were determined by fitting the data between l/20 5 r/2R,, _< l/5 to the power law form in 
Eqn.(2.1). The two-point correlation function of elliptical galaxies, &c(r), has a larger correlation 
length than that of spiral galaxies, &(r), indicating that elliptical galaxies are more clust,ered 
than spirals; this is in qualitative agreement with the observed morphological trend. However, 
the slope of ,&(r) is lower than the value y. _N 2.1 given by observations, and the correlation 
length for shell model spirals is somewhat smaller than the value r. N 4.4h-1 Mpc quoted for an 
observed spiral sample (see $11). On the other hand, this comparison is perhaps a bit premature, 
since the fractions of spirals and ellipticals in field and cluster components are observationally 
uncertain. 

c) Clwter-Galazy Cross Correlation Function 

The cluster-galaxy cross correlation function, fcg(r), is calculated by counting the excess 
(over the mean) numbers of shell, cluster, and background galaxies at distance r from a cluster. 
Since the background galaxies are randomly distributed, they make no contribution to the cross 
correlation. Hence, 

fcg(r) = r:;cr, + f:;(r). (5.21) 

The components f::(T) and f,““(r) can be calculated in a manner analogous to that of the galaxy- 
galaxy two-point function in eqns.(5.11) to (5.15): 

f:;:(r) =M, [4x4 l; dRA J,” dRB Am dRC2nrN,/,(RA) 

X n,h(RA)n,htRB)n.h(RC)R~R~R~]/ (-‘nsg . %I) 1 

(5.22) 
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and 
p&-) = g;‘(r) + g”(r) + tp(4 (5.23) 

where 

@(T) = ~~~~dRA~~dRB~;DzdRc~l(RA,RBIRC) 

xn,h(Rd)n,h(R~)n.h(Rc)~-~) (%I-;). 

(5.24) 

@I(T) =&$ Jr~dRA~~dRg~~dRc/gmdR=N~,(RI~RglRc) 

2 2 4 
x R~~(R~)R~~(R~)~~~(R~)~~~(R~)R~CR~ R$R$ + R$$ + R$% - $y , 

(5.25) 

Using Eqns.(4.7) and (4.8), we have 

Ms I@ N,,,(rl2) n,h(~/2) 
- - 

“i(‘.) = 2fr j@)j@o) Nib(o) %h(O) ’ 
(5.27) 

%3(0)~(d2) (R;+?~/2) - $~!,i2))2q3(p/2) 

g3(0)R;+63(O) 
- 
%h3@) ’ 

(5.28) 

7g2(0) @+&(r/2) - $&/2,) F(T/2) + g&/2)) 

e2(0)R;+62(0) (5.29) 

x wi2W) - bh2(0) ’ 
3M,@(0)R;+6(r/2)n,h(r/2) 

Th(O) ’ 
(5.30) 

Figure 12 shows the cluster-galaxy cross correlation function for several values of power law 
model parameters. The values of the slope, yO, and the correlation length, rO, of .&(r) listed 
in Table 4 were determined by fitting the data between l/20 < r/2Rmoz 5 l/3 to a power 
law. For R,, = 30h-‘Mpc, this range corresponds to 3h-lMpc 5 r 5 20h-‘Mpc. The slope 
and amplitude of the cluster-galaxy correlation function are both larger than those of the galaxy 
two-point correlation function, in a,greement with observations. With the parameter values which 
best fit the galaxy two-point function, (Y N 4, R,, - - 30h-lMpc, 12,&I?-,z II? l/15, /3 N 0, 
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61:1,andMc .., 0.2, the observed slope of the cluster-galaxy correlation function, “iO N 2.2, 
is also reproduced by the shell model. The shell model prediction for the cross correlation 
length, r, _N Gh-‘Mpc, is 30% below the best fit observed value (N 8.8h-‘Mpc). However, when 
uncerttinties in the selection function and K-correction are included, the model value for rc is 
only 5 - 10% below the range of the observations (Lilje and Efst.athiou 1988b). When projection 
effects in the Abel1 catalog are corrected for, t.his marginal discrepancy may be reduced even 
further. 

d) Void Distribution 

It is simple to include the effects of cluster and background galaxies on the void probability 
function. Since cluster galaxies reside on the shells, they make no change in the VPF given 
in Eqn.(4.26). The background galaxies are distributed in a random Poisson process, so the 
probability of finding a void in the background population is just d+,(r) = cmnbgV(?), where 

V(T) = (47r/3)r3. Since the background component is statistically independent of the shell a,nd 
cluster components, the total void probability is given by 

do(T) = e-(4r/3)Msn,r3~0,dh(T) , (5.31) 

where 4&,(r) is the VPF for the shell galaxies given in eqn.(4.26). This is shown as the 4 middle 

curves in Figure 8 assuming Mb = 0.2, R,, = 301a-1 Mpc, and using the mean density of 
galaxies in the CfAl subsample of ML, ng = 0.01h3Mpc-3. With this fraction of background 
galaxies, the shell model agrees with the observed VPF rather well. 

VI. SELF-AVOIDING SHELLS 

In the CfA2 slices, bubbles do not appear to lie inside each other. Therefore, as another 
modification to the simple shell models discussed so far, we now consider the case of self-avoiding 
shells, in which the centers of shells do not lie inside other bubbles; except for this constraint, the 
distribution of shells is otherwise a random Poisson process. More explicitly, shells centers a.re 
assumed to be anticorrelated on separations less than the shell radius: the two-point correlation 
function of shells is given by 

&h(‘) = (;I i; ; ; ::[z: zj. (6.1) 

Here, RI and R2 are the radii of two shells separated by r. This modification is motivated on 
physical grounds (WOD; Ostriker and Strassler 1989; Yoshioka and Ikeuchi 1990): if two bubbles 
have separation less than the shell radius, as they expand they attempt to sweep up mostly the 
same material, and eventually form one shell rather than two. In this section, we consider the 
effects of shell self-avoidance on the two-point correlation function of shell galaxies. 

This modification of the bubble distribution reduces the amplitude of the galaxy correla,tion 
function on separations P 5 3Rm,. Let 

Lv(~) = E$(T) - t;g(T)> (6.2) 
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where [&g(r) is the two-point correlation function of shell galaxies for a Poisson distribution 
of shells, Eqn.(4.13), and <&( r is the reduction due to shell anticorrelation. Then, [” (r) is ) 
calculated by counting all possible contributions from two galaxies belonging to two d%rent 

shells with the center of one shell lviner inside the other shell. The calculation proceeds by the 
following steps. We set RI > Rz, sike-the contribution from the case with RI < R2 is the same 
as that from the case with RI > R2, Starting from a galaxy sitting on the surface of the shell 
with radius RI, we draw a sphere with radius r. At a given point on the sphere, we calculate the 
ratio F of the probability of finding galaxies belonging to the shell with radius R2 lying inside 
the shell with radius R1 to the probability of finding galaxies belonging to the shell with radius 
R2 lying everywhere. We then average the ratio over the points on the sphere to obtain F: 
i) for RI 2 r: 

a) for R2 5 T, 

b) for T 5 R2 5 RI, 

ii) for T/Z 5 RI 5 r: 
a) for R2 5 2R1 -T, 

b) for 2R1 -r 5 R2 5 RI, 

%=2-E 1 4 _ 4R’ r 1 (6.3) 

1 R2 “Ib=Z-4R- 
r2 

1 12R1R2’ 
(6.4) 

R; r F2a+--- 
12Rlr 4R1 (6.5) 

=710> 

1 R2 
F2*=4+gj7- 

1 24Rlr SRI 8R2 

iii) for r/3 5 RI 5 r/2: 
a) for R2 5 r - 2R1, 

b)forr-2Rl<Rz<Rl, 

Tao = 0, 

1 R2 R: R2 R; _ r r + r2 
F3b=4+8R+--8r-- --- 

1 6R2r 24Rlr SRI 8R2 24R1R2 

=F2br 

iv) for RI < r/3: 

74 = 0. 

(6.6) 

(6.7) 

(6.8) 

(6.9) 
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Finally, we average the ratio over the galaxies on the shell with radius RI to get t&(r), 

(;JP) = -$ J,” dR1 f’ dR2p. 4nR;N,h(Rh,(R1). 4~R;N,h(Rhi,(R2). (6.10) 

Here? the factor of 2 is inserted to include the case with RI < R2. Using Eqn.(4.7), we find 

t&b”) = lrn dR1 /,’ dR2FlaG + lrn dR1 lR1 dR2FlbG 

+ /:/2 dR1 jgZR’-? dRZFs,G + J,;, dR1 /z”d,-, dR2F2bG 

+ 1;; dR1 l-““’ dR2F3,G + l:is” dR1 fiRI dRizFs,G 

+f3dR1~R1dR2&G 

(6.11) 

G =2R~R~Nsh(R1)Nsh(R2)nsh(Rl)nsh(R2) 
q2(o)~2(o)si;i;2(o) ’ 

Note that t&(r) is independent of f. 

For the case of equal size shells, tog(r) has a simple form, 

if r < Rsh 

,cgg(‘) = if Rsh < ’ < 2R,h 

if 2& < r < 3&j, 

ifr>3R,h 

(6.12) 

Figure 13 shows the two-point correlation function for equal size shells with f = 0.8, 1.0, and 1.2. 
The self-avoidance steepens the slope significantly but also reduces the amplitude. Hence, shell 
self-avoidance alone does not improve the match with observations (recall that in the shell models 
considered in 3111 and §IV, the amplitude of the two-point function was too small). However, 
combining shell self-avoidance with cluster (and background) galaxies should provide a quasi- 
realistic model which reproduces the observations reasonably well. Given the complexity of this 
combination, analytic calculations appear to be impractical. 

VII. DISCUSSION 

We have studied analytically the statistical distribution of galaxies in the phenomenological 
shell model of large-scale structure. Most of the previous studies of this model focused principally 
on the spatial clustering of galaxy clusters. Yet, the observational motivation for the model comes 
from the striking bubbly structure seen in the CfA survey extension slices. Since this structure 
is visibly traced by the shell galaxies discussed here, they are a crucial component of the model. 
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Including shell galaxies implies that additional observational data can be accounted for, while the 
number of extra model parameters introduced into the shell model is small. 

The model we have studied is admittedly simple: we have assumed spherical geometry, 
infinitely thin shells with no clustering of shell galaxies within shells, and, for the most part, a 
random distribution of bubbles. The spherical approximation is probably not a severe limitation 
(see Borden, Ostriker, and Weinberg 1989), and the assumption of infinitely thin shells does not 
affect the correlation functions on large scales (see Appendix A). Presumably, gravity will lead to 
clustering of shell galaxies within shells, but t~his process is not well understood: how does gravity 
correlate galaxies on the shells when they go unstable, without destroying the sharp shell structure 
seen in the redshift surveys (White and Ostriker 1990)? In particular, it is not obvious why the 
correlation function should be a featureless power law down to scales less than the shell thickness, 
as is observed, unless gravity dominates on significantly larger scales. The last assumption, of a 
random bubble distribution, is considered in §VI. In addition, one can imagine other prescriptions 
for laying down galaxies and clusters in this model: for example, galaxies might be distributed 
mainly on sheets where two shells meet, and clusters may form at the intersection of four shells, 
as is the case in the Voronoi tesselation models (Icke and Van de Weygaert 1987, 1990; Van de 
Weygaert and Icke 1989; Coles 1990). 

Despite these idealizations, we find that the shell model fits the observations of the galaxy two- 
point function rather well, and for the same choice of model parameters which best reproduce the 
cluster correlation function. Given the different geometrical origins of these functions, we count 
this a non-trivial success of the shell model. In addition, the galaxy three-point function and the 
void distribution function (when a substantial fraction of background galaxies are included) appear 
to be in reasonable agreement with the data. The slope of the cluster-galaxy cross correlation 
function is in good agreement with the observations, although its amplitude is marginally low. 
The correlation of clustering strength with morphology is reproduced in the shell model, but the 
slope of the correlation function of elliptical galaxies is lower than that observed. If we assume that 
the residual galaxy peculiar velocities (after gravitational effects are subtracted) are dominated by 
shell expansion, the shell model velocity correlation tensor appears to give a poor fit to the data; 
in particular, the perpendicular component C(r) has the wrong sign and too large an amplitude. 
This argument may be turned around to place an upper limit on the expansion velocity of shells: 
for 20 consistency with the spiral velocity data, the shell expansion speed must generally satisfy 
V,h(R)sO.l - 0.2HoR. This is consistent with expectations from several versions of the explosion 
model. Since the galaxy statistics are sensitive to the assumed spatial distribution of bubbles, we 
have also investigated the effect of shell anticorrelation on the two-point correlation function. We 
are currently studying other statistics, in particular the angular correlation function UJ(~‘), the 
void probability function, and the expected distribution in a pencil beam survey. 

Although the physical understanding of the bubble structure is far from complete, the relative 
success of the shell model in accounting for a variety of galaxy statistics, in addition to reproducing 
the qualitative visual structure of the CfA slices, suggests that large-scale galaxy clustering may 
reflect the geometry of the resulting structure more than the underlying physical processes (gravity 
vs. explosions) which generate it. 
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APPENDIX A 

FINITE THICKNESS SHELLS 

One of the striking features of the CfA bubbles is their sharp surfaces. The shells in the CfA 
survey have a typical thickness of 200 - 300km/sec, or 6&j, N 2 - 3h-lhlpc. Since this is of 
order the typical peculiar velocity dispersion of galaxies in the field, this is an upper limit to the 
true physical thickness of the bubbles. Throughout the body of the paper, we follow previous 
authors in taking the shell thickness 6&h to be zero (or, 6&h < &h). Thus, we can only 
meaningfully discuss correlation functions on scales larger than 6&h. We have also taken galaxy 
clusters to have zero spatial extent, which again limits us to large scales (> BAbelI N 1.5h-’ 
Mpc). In the context of the shell model, this approximation is also a necessary limitation, for 
non-linear gravitational effects have presumably steepened the correlation function on scales less 
than - 3/z-lMpc anyway (and may affect the correlation function on even larger scales). Hence, 
our predictions with the shell model are valid only on scales greater than or of order - 3h-‘Mpc. 
However, for completeness, we show here how the two-point correlation function behaves on small 
scales for shells with finite thickness, in the absence of gravity. The main point is that, if galaxies 
are randomly distributed within shells, the two-point correlation function will flatten on scales 
less than the shell thickness. Since this is not observed, we must assume gravity dominates on 
these scales, correlating the positions of galaxies within a shell (but see White and Ostriker 1990). 
On the other hand, the fact that the overall shell structure with sharp boundaries is maintained 
suggests that either gravity does not play an important role on scales larger than - 3h-lMpc or 
that it is important in building the shell structure itself (as, for instance, in the adhesion model 
of Kofman, Pogosyan, and Shandarin 1990, and Melott and Shandarin 1990). 

Here, we consider the case with equal size shells for simplicity: galaxies are assumed to be 
randomly distributed on shells with equal size but finite thickness, and the shells are assumed to 
be randomly distributed in space. Each shell has inner radius, &,, and outer radius, Rsh + s&h, 
and the volume filling factor is defined by 

The thickness b&j, is assumed to be smaller than the shell diameter, 2&h, so the dominant 
structures are shells rather than spheres. The two-point correlation function, tgp(r), is calculated 
in the following way: starting from a galaxy, we count the average number of neighbor galaxies 
at distance r which belong to the same shell, and then we average over galaxies at different radii 
from the shell center. Then, 
for r 5 6R,h: 

&x7(‘) = t&h + 6Rsh/2)3 
f [(Rsh + 6R,d3 - R:,] 

1 + r3 - 6 { (R,h + 6R,d2 + %,} T 
8 [(Rsh + 6R,d3 - R:,] I ’ 

(A.11 
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for 6&h 5 r 5 2&h: 

3 
b%J(~) = 8fr 

(R,h + 6R,h/2)3 (2&h + 6R,h)2 JR;, 

[@ah + 6Rsd3 - R:h] 2 ’ 
(A.4 

(Rsh + 6Rd2)3 
(Rsh + h&h)3 _ R* I" 3h 

6 (2R,h + 6R,h)’ 6Rzh; - 16& + 12&T - r3 1 , (A.31 

for 2% + 6R,h < r < 2R,h + 26R,h: 

1 (R,h + 6%d2)3 
“‘(‘) = 7 [( &, + 6R,h)3 - R;,] 2 

[(f&h + 6R,d3 - i (R,h + 6Rsd2 T + $r”] , (A.41 

for r 2 2&h + 26&,: 

bg(r) = 0. (A.51 

Figure Al shows the resulting two-point correlation function for f = 0.8 and 1.2 and 
6&,/2&h = l/10 (or, 6&h = 3h-‘Mpc for Rsh = KJ~-~Evlpc). Comparing with the plots 
for infinitely thin shells in Figure 1, the two-point correlation function becomes flat on scales less 
than the shell thickness, as expected: at small separation, r << 6R,h, the slope +yo N 0. Further- 
more, the slope goes to zero smoothly, rather than abruptly, around the separation corresponding 
to the shell diameter. However, on larger scales, 6R,&rS2&,, the behavior of the correlation 
function is very similar to the case of infinitely thin shells, justifying the neglect of the shell 
thickness. 

APPENDIX B 

The volume element at separations rb 5 r 5 q + drb and rC 5 r 5 rC + dr, from two points 
separated by re 5 r 5 r,+dro is calculated in the following way. Let rg < rb+rC, rb < r,+r,, and 
rc < re i- rb. If the above conditions are not satisfied, there is no intersection, hence 6V+ = 0. 
From the two points 1 and 2 let us draw two shells with radii rb and rC and thicknesses drb and 
dr, as in Figure Bl. Then, 

sin81 = 
2rdb 

sin 02 2riri + 2r,2ri + 2rgr,2 - T: - rt - rz = 

2rlTa 

P.1) 

C3.2) 
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sin 83 = 

2riri + 2r2r2 + 2~;~,2 - T: - T$ - ~,4 c a 

2rbTc 
(B.3) 

The intersection where the third point 3 is found constitutes a ring with a cross section which is 
drawn schematically in Figure B2. The length of the circumference of the ring is 

L = 2rrb sin 81, P.4) 

and the area of the cross section is 
s = $dTc -. 

sm 83 

Hence, the volume element is 
6V+ =L . S 

= 2TrbTc -drbdrc. 
Ta 

Q3.6) 

APPENDIX C 

q2 

The probability that, on the surface of a shell with radius &, galaxy 2 is found at separation 
re 5 r 5 re f dre from galaxy 1 and galaxy 3 is found at separations rb 5 T 5 rb + drb and 
rc 5 r 5 TV + dr, from galaxies 1 and 2 is the product of the area element on the surface at 
SeparatiOns rb 5 r 5 rb+dTb and rc 5 r < r,+dr, from two points separated by T,, 5 r 5 ra+dra, 

W+c, and the surface number density of galaxies, Ndh. 6S,+ is calculated in a similar way to 
SV, k in Appendix B. On the surface of a sphere with radius &,, let us draw two rings from the 
twd points 1 and 2 with radii rb and rc and thicknesses drb and dr, as in Figure Cl. Then, the 
lengths of the arcs on the surface corresponding to the three separations are 

1, = R,,t, ~wCCOS 

and the angles between them are 

sin81 = 
1 - Xi - Xi - X5 + 2X&& 

JiqJiq ’ 

sin 62 = 
1 - X; - 2; - Xz + 2Z&,Xc 

J-J- ' 

cc.11 

cc.41 

(C.5) 
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sin 83 = 
1 - Xz - Xi - X; + 2S,XbXc 

Ji=-&/q ’ 
(-5) 

where zca E 1 - (ri/2Rzh) and so on. The derivatives of the arcs are related to the derivatives of 
the separations by 

dl, = ((2.7) 

dlb = 2dTb, 
J 1 + Xb 

(C.8) 

dl, = 
J 

y-&g&. (C.9) 

If 1, < lb + I,, /b < 1, + I,, and I, < 1, + lb, the two rings meet at two intersections where the third 
point 3 is found. Since the intersections are similar to that in Figure B2, the area element is 

dlbdl, 
6S,,b, =2- 

sin 03 

=4rb’c&bdr, 
AZ 

((2.10) 

Fak =2TjjTi + 2T;T,2 + 2T;Tz - 
r~r~r~ 

Ti-T;-T;--. 

Rfh 
Note that, here, the conditions 1, < lb + I,, lb < 1, + I,, and 1, < 1, + lb insure F,b, > 0 and vice 
versa. 

APPENDIX D 

For a power law distribution of shell radii, we define y E r/2Rmz and ymin E kin/R-z. 
Then, substituting Eqns(4.9) to (4.11) into Eqns.(4.3) to (4.6), we find 

i 

* (1 - y$E) if y 5 y,jn 

n,h(7’/2) = ?* (1 - yl+) if y,in < y 5 1 CD.11 

0 ify>l, 

lea 14Jl?+nfl 

m(rP) = 
N” sh,ol-a+np I-&;; if Y I kin 

(D.2) 

if Ymin I Y < 1, 

x(r/2) = 
if Y 5 Ymin 

CD.31 
ify,;, 5 Y < 1, 

- if Y 5 Ymin 
Y;(r/2) = 

Y&$&+$& ‘$~$+$~ 

Y&e ‘;$f~lt+$~7 
(D.4) 

if ymin I Y < 1. 
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TABLES 

TABLE 1 

Model with Power Law Distribution of Shell Sizes* 

a = 3.5, R,,,;,,/Rmnz = l/8 

a = 4.5, R,,,;,IR,z = 118 
/ / 

(Y = 3.5, R,,,in/Rmoz = l/15 

*Data between l/20 < r/2Rmz 5 l/5 are used to fit the power law form of the two-point 
correlation function in Eqn.(2.1). 
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TABLE 2 

Model with Cluster and Background Components* 

CY = 3.5, R,;,,/R-z = l/8, 6 = 1.0, bfS = 0.8, J& = 0.2, ?“r, = 0.0 

a = 4.5, R,,,;,JRmaz = l/8, 6 = 1.0, M., = 0.8, MC = 0.2, Mb = 0.0 

= . 

f ro =hmz, 
0.8 I?5 0.079 I.&” I “.“IILI 
1.0 1.41 0.064 1.24 0.074 
1.2 1.39 0.054 1.22 I 0.062 

~1~ 70 TO 2Rmz 
1 ‘)* I n no, 

c* = ~5~ R-L/R--- = , /8. 6 = 1.0, MS = 0.6, Mc = 0.2, Mb = 0.2 
- -.-, --,,,zn,--rrur -, -1 

(y = 4.5, R,,,;,JRmz = l/8, S = 1.0, MS = 0.6, Me = 0.2, Mb = 0.2 
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a = 3.5, RmiJR,mz = l/15, 6 = 1.0, MS = 0.8, Mc = 0.2, Mb = 0.0 

(Y = 4.5, R,,,;,,/R-z = l/15, 6 = 1.0, A%& = 0.8, hf, = 0.2, &, = 0.0 

(Y = 3.5, R,,,;,/R tMz = l/15, 6 = 1.0, h4s = 0.6, Mc = 0.2, Mb = 0.2 

a = 4.5, R,,JR-z = l/15, 6 = 1.0, MS = 0.6, MC = 0.2, Mb = 0.2 

*Data between l/20 2 r/2R,. _ < l/5 are used to fit the power law form of the two-point 
correlation function in Eqn.(2.1). 
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TABLE 3 

Spiral galaxies* 

(Y = 3.5, Rmin1R-z = l/8, S = 1.0, h4~ = 0.95, MC = 0.05, Mb = 0.0 

a = 4.5, R,,,i,/R,, = l/8, 6 = 1.0, MS = 0.95, MC = 0.05, Mb = 0.0 

a = 3.5, R,,,;,/RmZ = l/15, 6 = 1.0, MS = 0.95, MC = 0.05, Mb = 0.0 

70 ro 2&m 
7 n* I n nso 

= . p = 1.0 

f ro 2Sw. 
0.8 11;5 0.043 I.“” I “.““I 
1.0 1.54 

I “.“.I I I 
1 no 
I.“0 

I 
I 

n flA7 “.“11 

1.2 1.54 I 
,-. ,,“” “.“JJ 1.07 0.040 

0~ = 4.5, R,&Rmoz = l/15, c5 = 1.0, MS = 0.95, Mc = 0.05, Mb = 0.0 

*Data between l/20 5 r/2R,, 5 l/5 are used to fit the power law form of the two-point 
correlation function in EqnJ2.1). 
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Elliptical galaxies* 

cy = 3.5, R,,,;,/R,, = 118, 6 = 1.0, MS = 0.67, Me = 0.33, Mb = 0.0 

= = 1.0 

f ro 2&m ro 2&mzz 

cy = 3.5, R,,,;,/Rm, = 118, 6 = 1.0, MS = 0.67, Me = 0.33, Mb = 0.0 

I H = lln I = 1.0 _I 

0.8 11:5 0.168 1% 0.189 1 ?R I lIlX!2 

1.0 1.41 0.136 1.33 0.153 
1.2 1.37 0.113 1.30 0.128 

a = 4.5, R,,,;,,lRmaz = l/8, 6 = 1.0, n/f, = 0.67, Me = 0.33, Mb = 0.0 

i 
k----l 

a = 3.5, R,,,;,,/Rmaz = l/15, 6 = 1.0, MS = 0.67, Mc = 0.33, Mb = 0.0 

= p = 1.0 

f 
11:5 

ro Wmz ro Wmz 
0.8 0.137 120 0.166 
10 
1:2 

1.51 0.111 1.36 0.135 
1.47 0.094 1.32 0.113 

*Data between l/20 5 T/~R-= 5 l/5 are used to fit the power law form of the two-point 
correlation function in Eqn.(2.1). 
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TABLE 4 

Cluster-Galaxy Cross correlation function* 

a = 3.5, R,,+,/R,,,az = l/8, 6 = 1.0, MS = 0.8, MC = 0.2, hfb = 0.0 

(Y = 4.5, Ginf R-z = l/8, 6 = 1.0, Mb = 0.8, Mc = 0.2, Mb =O.O 

I = I = 1.0 

f % ro 2&m, TO 7%mz 
,I” 1 nr, I n~im I I?5 I 0.125 U.0 I I.3.J I -.--- 
1.0 1.88 I 0.103 1.70 I 0.106 
1.2 I 1.85 0.091 1.67 0.092 

01 = 3.5, ~in/Rmz = l/15, 6 = 1.0, MS = 0.8, Mc = 0.2, Mb = 0.0 

*Data between l/20 5 r/2Rmz _ < l/3 are used to fit the power law form of the cross correlation 
function. 
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FIGURE CAPTIONS 

Fig. l.- The galaxy two-point correlation function for the equal size shell model with f = 0.8, 
1.0, and 1.2. Dashed line at lower left shows r-l.’ slope for comparison. 

Fig. 2.- The scaled three-point correlation function Q for the equal size shell model plotted 
against r. Q was calculated for 0 < ra/2R,j,, ~b/i&h, r&!R,j, < l/2 and averaged over U, 
and v. 

Fig. 3.- The peculiar velocity correlation function and the relative peculiar velocity of the equal 
size shell model for f = 0.8, normalized to the shell velocity V&. The dot-short dashed 

curve is Evv(~), dot-long dashed curve &$(r), short dashed curve t,,,,(r), and the solid curve II 

is VIZ(~). 

Fig. 4.- The void probability function of the equal size shell model for f = 0.8 (solid curve) and 
1.2 (short dashed curve). The void probability function for a random Poisson distribution 
of galaxies with ng = 0.01/~~Mpc-~ (assuming Rsh = 15h-lMpc) is also shown (dot-short 
dashed curve) for comparison. 

Fig. 5.- The galaxy two-point correlation function for the power law model. (a) &;,/Rmm = 
l/8, (Y = 3.5, p = 0.0, and f = 0.8, 1.0, and 1.2; (b) same as (a) except o = 4.5; (c) same 
as (a) except R,,,;,JRmz = l/15; (d) same as (a) except R,&R,, = l/15 and LY = 4.5. 
Dashed line corresponding to r-l.* is shown at lower left for comparison. 

Fig. 6.- The scaled three-point correlation function Q for the power law model plotted against 
P. Q was calculated for 0 < T&R-~, Tb/2Rmaz, rc/2Rmoz < l/2 and averaged over u 
and v. (a) &;,.,/Rmoa = l/S, CY = 3.5, p = 0.0; (b) same as (a) except p = 1.0; (c) same as 
(a) except (Y = 4.5; (d) same as (a) except a = 4.5 and p = 1.0. 

Fig. 7.- The peculiar velocity correlation function and the relative peculiar velocity of the power 
law model. (a) &in/Rmoz = l/S, (Y = 3.5, ,L? = 0.0, 7 = 1.0, and f = 0.8; (b) same as 
(a) except 13 = 1.0; (c) same as (a) except o = 4.5; (d) same as (a) except LY = 4.5 and 

p = 1.0. The dot-short dashed curve is &(T), dot-long dashed curve [s,(r), short dashed 
curve [,,,,(r), and the solid curve is VIZ(T). 

Fig. 8.-The void probability function of the power law model (4 upper curves) and the power law 
model with cluster and background galaxies (4 middle curves). Here, kin/R-z = l/8. 
The solid curve corresponds to f = 0.8 and (Y = 3.5, dotted curve f = 0.8 and o = 4.5, 
short-dashed curve f = 1.2 and (Y = 3.5, and long dashed curve f = 1.2 and o = 4.5. In 
addition, the middle curves assume Mb = 0.2, ng = 0.01h3Mpc-3, and &I. = 30h-'hlpc 
(see §V). The void probability function for a random Poisson distribution of galaxies with 
ne = 0.01h3Mpc-3 (assuming R,, = 30h-‘Mpc) is also plotted (lower dot-short dashed 
curve) for comparison. 
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Fig. 9.- The galaxy two-point correlation function for the the power law model including cluster 
and background galaxies. (a) R,&Rmz = l/S, Q = 3.5, p = 0.0, 6 = 1.0, Me = 0.2, 
Mb = 0.0 and f = 0.8, 1.0, and 1.2; (b) same as (a) except LY = 4.5; (c) same as (a) except 
Mb = 0.2; (d) same as (a) except Mb = 0.2 and a = 4.5. Dashed line corresponding to .-l” 
is plotted at lower left for comparison. 

Fig. lo.- The spiral galaxy two-point correlation function. Here, spiral galaxies are assumed to 
comprise 95% shell (field) galaxies and 5% cluster galaxies. (a) R,,&Rmt = l/8, 01 = 3.5, 
p = 0.0, S = 1.0, and f = 0.8, 1.0, and 1.2; (b) same as (a) except (Y = 4.5. Dashed line 
corresponding to r-l.’ is plotted at lower left for comparison. 

Fig. ll.- The elliptical galaxy two-point correlation function. Here, elliptical galaxies are 
assumed to comprise 67% shell (field) gal axies and 33% cluster galaxies. (a) R,&R,, = 
l/8, o = 3.5, p = 0.0, 6 = 1.0, and f = 0.8, 1.0, and 1.2; (b) same &s (a) except 01 = 4.5. 
Dashed line corresponding to T -L* is plotted at lower left for comparison. 

Fig. 12.- The cluster-galaxy cross correlation function. (a) R,&R,, = l/8, o = 3.5,@ = 0.0, 
6 = 1.0, MC = 0.2, Mb = 0.0 and f = 0.8, 1.0, and 1.2; (b) same as (a) except cy = 4.5. 
Dashed line corresponding to r-l.* is plotted at lower left for comparison. 

Fig. 13.- The galaxy two-point correlation function with equal size, self-avoiding shells for 
f = 0.8, 1.0, and 1.2. Dashed line corresponding to r-1.8 is plotted at lower left for 
comparison. 

Fig. Al.- The galaxy two-point correlation function with equal size, finite thickness shells for 
f = 0.8 and 1.2 and 6Rsh/2Rsh = l/10. Dashed line corresponding to 7-l.’ is plotted at 
lower left for comparison. 

Fig. Bl.- Schematic diagram for the volume element at the point 3, separated by ~6 5 T < rb+drb 
and PC 5 r 5 rc + dr, from the two points, 1 and 2, which are separated by r, 5 r 5 TV + dr,. 

Fig. B2.- The cross section of the ring at the intersection of two shells in Figure Bl. 

Fig. Cl.- Schematic diagram to find, on the surface of a shell, the area element at the point 
3, separated by lb < 1 5 lb + dlb and I, 5 1 5 lc + dlc from two points, 1 and 2, which are 
separated by lo. 5 1 < 1, + dl,. 
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